Show simple item record

dc.contributor.authorUddin, Mohammed
dc.date.accessioned2021-03-29T05:46:09Z
dc.date.available2021-03-29T05:46:09Z
dc.date.issued2017-11-09
dc.identifier.other204-2017.43
dc.identifier.urihttps://repository.mbru.ac.ae/handle/1/222
dc.description.abstractBackground: Autism spectrum disorder (ASD), a developmental disorder of early childhood onset, affects males four times more frequently than females, suggesting a role for the sex chromosomes. In this study, we describe a family with ASD in which a predicted pathogenic nonsense mutation in the X-chromosome gene RAB39B segregates with ASD phenotype. Methods: Clinical phenotyping, microarray, and whole genome sequencing (WGS) were performed on the five members of this family. Maternal and female sibling X inactivation ratio was calculated, and phase was investigated. Mutant-induced pluripotent stem cells engineered for an exon 2 nonsense mutation were generated and differentiated into cortical neurons for expression and pathway analyses. Results: Two males with an inherited RAB39B mutation both presented with macrocephaly, intellectual disability (ID), and ASD. Their female sibling with the same mutation presented with ID and a broad autism phenotype. In contrast, their transmitting mother has no neurodevelopmental diagnosis. Our investigation of phase indicated maternal preferential inactivation of the mutated allele, with no such bias observed in the female sibling. We offer the explanation that this bias in X inactivation may explain the absence of a neurocognitive phenotype in the mother. Our cellular knockout model of RAB39B revealed an impact on expression in differentiated neurons for several genes implicated in brain development and function, supported by our pathway enrichment analysis. Conclusions: Penetrance for ASD is high among males but more variable among females with RAB39B mutations. A critical role for this gene in brain development and function is demonstrated.en_US
dc.language.isoenen_US
dc.subjectRAB39Ben_US
dc.subjectIntellectual disability (ID)en_US
dc.subjectRNAseqen_US
dc.subjectWhole genome sequencing (WGS)en_US
dc.titleMutations in RAB39B in individuals with intellectual disability, autism spectrum disorder, and macrocephalyen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record