• Login
    View Item 
    •   MBRU Knowledge Repository Home
    • College of Medicine (CoM)
    • Faculty Publications (CoM)
    • View Item
    •   MBRU Knowledge Repository Home
    • College of Medicine (CoM)
    • Faculty Publications (CoM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lipids derived from Camel milk regulate NLRP3 inflammasome subunit-dependent inflammatory responses in human macrophages

    View/Open
    204-2021.131 Yaj Banerjee (545.8Kb)
    Date
    2021
    Author
    Banerjee, Yajnavalka
    Metadata
    Show full item record
    Abstract
    Background: Camel milk is widely used for its reported anti-diabetic and health promoting effects. Lipids derived from the milk have also been shown to exhibit potent anti-inflammatory effects. The mechanism through which these lipids and constituent fatty acids exert these effects remains elusive. The aim of this study was to investigate the effect of camel milk on glycated protein-mediated macrophage inflammation. Methods: To determine the effect of Total Lipids (TL) and Total Fatty Acids (TFA) derived from camel milk on an in vitro model of diabetic inflammation, differentiated THP-1 (dTHP-1) cells stimulated with glycated serum albumin (gBSA) was employed. Cells were pre-treated with TL or TFA before challenging cells with gBSA. Results: Gas Chromatography-Mass Spectrometry (GC-MS) analysis found that TL was 96% triacylglycerol (TAG) while the TFA comprised 65% saturated and 35% unsaturated fatty acids. Both TL and TFA significantly (p<0.05) decreased gBSA-induced secretion of pro-inflammatory cytokines (Tumour necrosis factor-(TNF)-α, Interleukin-(IL)-1β/18). TL also demonstrated the ability to regulate the expression of p50/p65 sub-units of Nuclear Factor-kappa B (NF-κB), while concomitantly increasing the expression of regulatory cytokines IL-10, IL-1 Receptor Antagonist (IL-1Ra) and Cluster of Differentiation 163 (CD163)-shifting cells towards an M2 macrophage phenotype. Additionally, we found that TL significantly regulated the expression of Nucleotidebinding oligomerization domain-like receptor family pyrin domain containing-3 (NLRP3) inflammasome subunit and its regulator; Ten-Eleven Translocation-2 (TET-2). Conclusion: This paper demonstrates the ability of camel milk lipids to regulate gBSA-induced macrophage inflammation in vitro, by modulating the expression of key inflammatory regulators such NF-B and NLRP3 inflammasome subunit.
    URI
    https://repository.mbru.ac.ae/handle/1/855
    Collections
    • Faculty Publications (CoM)

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MBRU Knowledge RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV