• Login
    View Item 
    •   MBRU Knowledge Repository Home
    • Hamdan Bin Mohammed College of Dental Medicine (HBMCDM)
    • Faculty Publications (HBMCDM)
    • View Item
    •   MBRU Knowledge Repository Home
    • Hamdan Bin Mohammed College of Dental Medicine (HBMCDM)
    • Faculty Publications (HBMCDM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tissue Engineering Strategies to Increase Osteochondral Regeneration of Stem Cells; a Close Look at Different Modalities

    Thumbnail
    View/Open
    304-2021.15 Keyvan Moharamzadeh.pdf (1.077Mb)
    Date
    2021
    Author
    Moharamzadeh, Keyvan
    Metadata
    Show full item record
    Abstract
    Abstract: The homeostasis of osteochondral tissue is tightly controlled by articular cartilage chondrocytes and underlying subchondral bone osteoblasts via different internal and external clues. As a correlate, the osteochondral region is frequently exposed to physical forces and mechanical pressure. On this basis, distinct sets of substrates and physicochemical properties of the surrounding matrix affect the regeneration capacity of chondrocytes and osteoblasts. Stem cells are touted as an alternative cell source for the alleviation of osteochondral diseases. These cells appropriately respond to the physicochemical properties of different biomaterials. This review aimed to address some of the essential factors which participate in the chondrogenic and osteogenic capacity of stem cells. Elements consisted of biomechanical forces, electrical fields, and biochemical and physical properties of the extracellular matrix are the major determinant of stem cell differentiation capacity. It is suggested that an additional certain mechanism related to signal-transduction pathways could also mediate the chondro-osteogenic differentiation of stem cells. The discovery of these clues can enable us to modulate the regeneration capacity of stem cells in osteochondral injuries and lead to the improvement of more operative approaches using tissue engineering modalities.
    URI
    https://repository.mbru.ac.ae/handle/1/664
    Collections
    • Faculty Publications (HBMCDM)

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MBRU Knowledge RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV