• Login
    View Item 
    •   MBRU Knowledge Repository Home
    • Hamdan Bin Mohammed College of Dental Medicine (HBMCDM)
    • Faculty Publications (HBMCDM)
    • View Item
    •   MBRU Knowledge Repository Home
    • Hamdan Bin Mohammed College of Dental Medicine (HBMCDM)
    • Faculty Publications (HBMCDM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ontology with SVM Based Diagnosis of Tuberculosis and Statistical Analysis

    Thumbnail
    View/Open
    304-2016.03 Ammar H. Khamis (422.1Kb)
    Date
    2016-05
    Author
    Khamis, Ammar H.
    Metadata
    Show full item record
    Abstract
    Abstract: As per WHO report, Tuberculosis remains one of the world's deadliest communicable diseases. In 2013, an estimated 9.0 million developed TB and 1.5 million died from the disease, 360,000 of which whom were HIV positive. Tuberculosis is still a major problem in advanced countries due to specific socioeconomic factors. From a global perspective, many laboratories use the same methods today that were in use long time ago for the detection of tuberculosis, because most of innovative current technologies for the detection of tuberculosis incurs high cost and cannot be afforded for all the countries. The detection of tuberculosis remains a challenge from the point of diagnosis and confirmation and there is a growing need of accurate diagnosis process. In this research, an ontology based classification of tuberculosis laboratory tests, environmental factors and other vital signs are studied along with support vector machine for the diagnosis of the tuberculosis disease. Through this method, we are able to measure of the weightage of the disease, the future onset of the disease and produce, an alert. Ontology based classification is widely used for knowledge based information grouping and structuring while SVM is used for accurate and fast machine learning algorithm. By combining Ontology and the training data based on various characteristic of the tuberculosis are passed onto linear SVM. The results we are able to achieve with this method are helpful for diagnosis support and future onset.
    URI
    https://repository.mbru.ac.ae/handle/1/480
    Collections
    • Faculty Publications (HBMCDM)

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MBRU Knowledge RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV