Hamdan Bin Mohammed College of Dental Medicine (HBMCDM)
Permanent URI for this communityhttps://mbru-staging.nexuslib.xyz/handle/1/5
Browse
Browsing Hamdan Bin Mohammed College of Dental Medicine (HBMCDM) by Subject "3D printing"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication 3D Printing of Dental Prostheses: Current and Emerging Applications(2023) Moharamzadeh, KeyvanAbstract: Revolutionary fabrication technologies such as three-dimensional (3D) printing to develop dental structures are expected to replace traditional methods due to their ability to establish constructs with the required mechanical properties and detailed structures. Three-dimensional printing, as an additive manufacturing approach, has the potential to rapidly fabricate complex dental prostheses by employing a bottom-up strategy in a layer-by-layer fashion. This new technology allows dentists to extend their degree of freedom in selecting, creating, and performing the required treatments. Three-dimensional printing has been narrowly employed in the fabrication of various kinds of prostheses and implants. There is still an on-demand production procedure that offers a reasonable method with superior efficiency to engineer multifaceted dental constructs. This review article aims to cover the most recent applications of 3D printing techniques in the manufacturing of dental prosthetics. More specifically, after describing various 3D printing techniques and their advantages/disadvantages, the applications of 3D printing in dental prostheses are elaborated in various examples in the literature. Different 3D printing techniques have the capability to use different materials, including thermoplastic polymers, ceramics, and metals with distinctive suitability for dental applications, which are discussed in this article. The relevant limitations and challenges that currently limit the efficacy of 3D printing in this field are also reviewed. This review article has employed five major scientific databases, including Google Scholar, PubMed, ScienceDirect, Web of Science, and Scopus, with appropriate keywords to find the most relevant literature in the subject of dental prostheses 3D printing.Publication Accuracy of three-dimensional dental resin models created by fused deposition modeling, stereolithography, and Polyjet prototype technologies: A comparative study(2018) Ghoneima, AhmedObjectives: The aim of this study was to assess the dimensional accuracy of fused deposition modeling (FDM)–, Polyjet-, and stereolithography (SLA)–produced models by comparing them to traditional plaster casts. Materials and Methods: A total of 12 maxillary and mandibular post treatment orthodontic plaster casts were selected from the archives of the Orthodontic Department at the Indiana University School of Dentistry. Plaster models were scanned, saved as stereolithography files, and printed as physical models using three different three-dimensional (3D) printers: Makerbot Replicator (FDM), 3D Systems SLA 6000 (SLA), and Objet Eden500V (Polyjet). A digital caliper was used to obtain measurements on the original plaster models as well as on the printed resin models. Results: Comparison between the 3D printed models and the plaster casts showed no statistically significant differences in most of the parameters. However, FDM was significantly higher on average than were plaster casts in maxillary left mixed plane (MxL-MP) and mandibular intermolar width (Md-IMW). Polyjet was significantly higher on average than were plaster casts in maxillary intercanine width (Mx-ICW), mandibular intercanine width (Md-ICW), and mandibular left mixed plane (MdL-MP). Polyjet was significantly lower on average than were plaster casts in maxillary right vertical plane (MxR-vertical), maxillary left vertical plane (MxL-vertical), mandibular right anteroposterior plane (MdR-AP), mandibular right vertical plane (MdR-vertical), and mandibular left vertical plane (MdL-vertical). SLA was significantly higher on average than were plaster casts in MxL-MP, Md-ICW, and overbite. SLA was significantly lower on average than were plaster casts in MdR-vertical and MdL-vertical. Conclusions: Dental models reconstructed by FDM technology had the fewest dimensional measurement differences compared to plaster models.Publication Physiochemical and mechanical characterisation of orthodontic 3D printed aligner material made of shape memory polymers (4D aligner material)(2023) Ghoneima, Ahmed; Elshazly, TarekAbstract: Objectives: To conduct a physiochemical and mechanical material analysis on 3D printed shape-memory aligners in comparison to thermoformed aligners. Materials and methods: Four materials were examined, including three thermoformed materials: CA Pro (CP), Zendura A (ZA), Zendura FLX (ZF), and one 3D printed material: Tera Harz (TC-85). Rectangular strips measuring 50 × 10 × 0.5 mm were produced from each material. Five tests were conducted, including differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), shape recovery tests, three-points bending (3 PB), and Vickers surface microhardness (VH). Results: DSC recorded glass transition temperatures (Tg) at 79.9 ◦C for CP, 92.2 ◦C for ZA, 107.1 ◦C for ZF, and 42.3 ◦C for TC-85. In DMA analysis at 20–45 ◦C, a prominent decrease in storage modulus was observed, exclusively for TC-85, as the temperature increased. Notably, within the temperature range of 30–45 ◦C, TC-85 exhibited substantial shape recovery after 10 min, reaching up to 86.1 %, while thermoformed materials showed minimal recovery (1.5–2.9 %). In 3 PB test (at 30, 37, 45 ◦C), ZA demonstrated the highest force at 2 mm bending, while TC-85 exhibited the lowest. Regarding VH at room temperature, there was a significant decrease for both ZA and ZF after thermoforming. ZA had the highest hardness, followed by ZF and TC-85, with CP showing the lowest values. Conclusions: TC-85 demonstrates exceptional shape memory at oral temperature, improving adaptation, reducing force decay, and enabling, together with its higher flexibility, extensive tooth movement per step. Additionally, it maintains microhardness similar to thermoformed sheets, ensuring the durability and effectiveness of dental aligners.