Browsing by Author "Uddin, Mohammed"
Now showing 1 - 20 of 44
- Results Per Page
- Sort Options
Publication Analyzing single cell transcriptome data from severe COVID-19 patients(2022) Nassir, Nasna; Tambi, Richa; Bankapur, Asma; Karuvantevida, Noushad; Zehra, Binte; Begum, Ghausia; Hameid, Reem Abdel; Ahmed, Awab; Shabestari, Seyed Ali Safizadeh; Hachim, Mahmood Yaseen; Alsheikh-Ali, Alawi; Berdiev, Bakhrom; Al Heialy, Saba; Uddin, MohammedSUMMARY: We describe the protocol for identifying COVID-19 severity specific cell types and their regulatory marker genes using single-cell transcriptomics data. We construct COVID-19 comorbid disease-associated gene list using multiple databases and literature resources. Next, we identify specific cell type where comorbid genes are upregulated. We further characterize the identified cell type using gene enrichment analysis. We detect upregulation of marker gene restricted to severe COVID-19 cell type and validate our findings using in silico, in vivo, and in vitro cellular models.Publication An ANKRD26 nonsense somatic mutation in a female with epidermodysplasia verruciformis (Tree Man Syndrome)(2018-04-26) Uddin, MohammedAbstract: Epidermodysplasia verruciformis (EV) is an extremely rare hereditary skin disease characterized by an abnormal susceptibility to the human papilloma virus (HPV) with an increased risk of cutaneous malignancy. Here we report the first female severe EV case in Bangladesh, a 10-year-old girl with a nonsense somatic mutation impacting ANKRD26 gene.Publication Antibody-drug conjugate T-DM1 treatment for HER2+ breast cancer induces ROR1 and confers resistance through activation of Hippo transcriptional coactivator YAP1(2019-05-10) Uddin, MohammedBackground: A newly developed drug trastuzumab emtansine (T-DM1) has improved the survival of breast cancer (BC) patients. Despite an impressive initial clinical response, a subgroup of patient develop resistance and present therapeutic challenges. The underlying resistance mechanisms are not fully investigated. We report that T-DM1 treatment modulates the expression of ROR1 (type 1 receptor tyrosine kinase-like orphan receptor)and induces self-renewal of cancer stem cells (CSCs) leading to therapeutic resistance. Methods: Using BC patient tumor samples, and BC cell lines we gained insight into the T-DM1 treatment inducedROR1 over expression and resistance.In vitrosphere forming assays and in vivo extreme dilution assays were employed to analyze the stemness and self-renewal capacity of the cells. A series of molecular expression and protein assays including qRT-PCR, FACS-sorting, ELISA, immunostaining, Western blotting were used to provide evidence. Findings: Exposure of cells to T-DM1 shifted ROR1 expression from low to high, enriched within the CSC subpopulation, coincident with increased Bmi1 and stemness factors. T-DM1 induced ROR1 cells showed high spheroidand tumor forming efficiency in vitro and in an animal model exhibiting shorter tumor-free time.Mechanistically,the over expression of ROR1 is partly induced by the activation of YAP1 and its target genes. Silencing of ROR1 andYAP1 by pharmacologic inhibitors and/or sh/siRNA inhibited spheroid formation, the initiation of tumors and the capacity for self-renewal and ROR1 over expression. Interpretations: The results presented here indicate that simultaneous targeting of ROR1 and YAP1 may suppress CSC self-renewal efficacy and inhibit tumor progression in BC. In this manner such treatments may overcome theT-DM1 mediated therapeutic resistance and improve clinical outcome.Publication Artificial intelligence for precision medicine in neurodevelopmental disorders(2019) Uddin, MohammedAbstract: The ambition of precision medicine is to design and optimize the pathway for diagnosis, therapeutic intervention, and prognosis by using large multidimensional biological datasets that capture individual variability in genes, function and environment. This offers clinicians the opportunity to more carefully tailor early interventions— whether treatment or preventative in nature—to each individual patient. Taking advantage of high-performance computer capabilities, artificial intelligence (AI) algorithms can now achieve reasonable success in predicting risk in certain cancers and cardiovascular disease from available multidimensional clinical and biological data. In contrast, less progress has been made with the neurodevelopmental disorders, which include intellectual disability (ID), autism spectrum disorder (ASD), epilepsy and broader neurodevelopmental disorders. Much hope is pinned on the opportunity to quantify risk from patterns of genomic variation, including the functional characterization of genes and variants, but this ambition is confounded by phenotypic and etiologic heterogeneity, along with the rare and variable penetrant nature of the underlying risk variants identified so far. Structural and functional brain imaging and neuropsychological and neurophysiological markers may provide further dimensionality, but often require more development to achieve sensitivity for diagnosis. Herein, therefore, lies a precision medicine conundrum: can artificial intelligence offer a breakthrough in predicting risks and prognosis for neurodevelopmental disorders? In this review we will examine these complexities and consider some of the strategies whereby artificial intelligence may overcome them.Publication Association of IMMP2L deletions with autism spectrum disorder: A trio family study and meta-analysis(2018) Uddin, MohammedAbstract: IMMP2L, the gene encoding the inner mitochondrial membrane peptidase subunit 2- like protein, has been reported as a candidate gene for Tourette syndrome, autism spectrum disorder (ASD) and additional neurodevelopmental disorders. Here we genotyped 100 trio families with an index proband with autism spectrum disorder in Han Chinese population and found three cases with rare exonic IMMP2L deletions.We have conducted a comprehensive meta-analysis to quantify the association of IMMP2L deletions with ASD using 5,568 cases and 10,279 controls. While the IMMP2L deletions carried non-recurrent breakpoints, in contrast to previous reports, our meta-analysis found no evidence of association (P > 0.05) between IMMP2L deletions and ASD. We also observed common exonic deletions impacting IMMP2L in a separate control (5,971 samples) cohort where subjects were screened for psychiatric conditions. This is the first systematic review and meta-analysis regarding the effect of IMMP2L deletions on ASD, but further investigations in different populations, especially Chinese population may be still needed to confirm our results.Publication Cell‑specifc MAPT gene expression is preserved in neuronal and glial tau cytopathologies in progressive supranuclear palsy(2023) Nassir, Nasna; Ahmed, Awab; Uddin, MohammedAbstract: Microtubule-associated protein tau (MAPT) aggregates in neurons, astrocytes and oligodendrocytes in a number of neurodegenerative diseases, including progressive supranuclear palsy (PSP). Tau is a target of therapy and the strategy includes either the elimination of pathological tau aggregates or reducing MAPT expression, and thus the amount of tau protein made to prevent its aggregation. Disease-associated tau afects brain regions in a sequential manner that includes cell-to-cell spreading. Involvement of glial cells that show tau aggregates is interpreted as glial cells taking up misfolded tau assuming that glial cells do not express enough MAPT. Although studies have evaluated MAPT expression in human brain tissue homogenates, it is not clear whether MAPT expression is compromised in cells accumulating pathological tau. To address these perplexing aspects of disease pathogenesis, this study used RNAscope combined with immunofuorescence (AT8), and single-nuclear(sn) RNAseq to systematically map and quantify MAPT expression dynamics across diferent cell types and brain regions in controls (n=3) and evaluated whether tau cytopathology afects MAPT expression in PSP (n=3). MAPT transcripts were detected in neurons, astrocytes and oligodendrocytes, and varied between brain regions and within each cell type, and were preserved in all cell types with tau aggregates in PSP. These results propose a complex scenario in all cell types, where, in addition to the ingested misfolded tau, the preserved cellular MAPT expression provides a pool for local protein production that can (1) be phosphorylated and aggregated, or (2) feed the seeding of ingested misfolded tau by providing physiological tau, both accentuating the pathological process. Since tau cytopathology does not compromise MAPT gene expression in PSP, a complete loss of tau protein expression as an early pathogenic component is less likely. These observations provide rationale for a dual approach to therapy by decreasing cellular MAPT expression and targeting removal of misfolded tau.Publication Computational Analysis of Short Linear Motifs in the Spike Protein of SARS-CoV-2 Variants Provides Possible Clues into the Immune Hijack and Evasion Mechanisms of Omicron Variant(2022-08) Soorajkumar, Anjana; Alakraf, Ebrahim; Uddin, Mohammed; Du Plessis, Stefan; Alsheikh-Ali, Alawi; Kandasamy, Richard KAbstract: Short linear motifs (SLiMs) are short linear sequences that can mediate protein–protein interaction. Mimicking eukaryotic SLiMs to compete with extra- or intracellular binding partners, or to sequester host proteins is the crucial strategy of viruses to pervert the host system. Evolved proteins in viruses facilitate minimal protein–protein interactions that significantly affect intracellular signaling networks. Unfortunately, very little information about SARS-CoV-2 SLiMs is known, especially across SARS-CoV-2 variants. Through the ELM database-based sequence analysis of spike proteins from all the major SARS-CoV-2 variants, we identified four overriding SLiMs in the SARS-CoV-2 Omicron variant, namely, LIG_TRFH_1, LIG_REV1ctd_RIR_1, LIG_CaM_NSCaTE_8, and MOD_LATS_1. These SLiMs are highly likely to interfere with various immune functions, interact with host intracellular proteins, regulate cellular pathways, and lubricate viral infection and transmission. These cellular interactions possibly serve as potential therapeutic targets for these variants, and this approach can be further exploited to combat emerging SARS-CoV-2 variants.Publication Construction of copy number variation landscape and characterization of associated genes in a Bangladeshi cohort of neurodevelopmental disorders.(2023) Karuvantevida, Noushad; Begum, Ghausia; Zehra, Binte; Nassir, Nasna; Uddin, MohammedIntroduction: Copy number variations (CNVs) play a critical role in the pathogenesis of neurodevelopmental disorders (NDD) among children. In this study, we aim to identify clinically relevant CNVs, genes and their phenotypic characteristics in an ethnically underrepresented homogenous population of Bangladesh. Methods: We have conducted chromosomal microarray analysis (CMA) for 212 NDD patients with male to female ratio of 2.2:1.0 to identify rare CNVs. To identify candidate genes within the rare CNVs, gene constraint metrics [i.e., “Critical-Exon Genes (CEGs)”] were applied to the population data. Autism Diagnostic Observation Schedule-Second Edition (ADOS-2) was followed in a subset of 95 NDD patients to assess the severity of autism and all statistical tests were performed using the R package. Results: Of all the samples assayed, 12.26% (26/212) and 57.08% (121/212) patients carried pathogenic and variant of uncertain significance (VOUS) CNVs, respectively. While 2.83% (6/212) patients’ pathogenic CNVs were found to be located in the subtelomeric regions. Further burden test identified females are significant carriers of pathogenic CNVs compared to males (OR = 4.2; p = 0.0007). We have observed an increased number of Loss of heterozygosity (LOH) within cases with 23.85% (26/ 109) consanguineous parents. Our analyses on imprinting genes show, 36 LOH variants disrupting 69 unique imprinted genes and classified these variants as VOUS. ADOS-2 subset shows severe social communication deficit (p = 0.014) and overall ASD symptoms severity (p = 0.026) among the patients carrying duplication CNV compared to the CNV negative group. Candidate gene analysis identified 153 unique CEGs in pathogenic CNVs and 31 in VOUS. Of the unique genes, 18 genes were found to be in smaller (1 MB) focal CNVs in our NDD cohort and we identified PSMC3 gene as a strong candidate gene for Autism Spectrum Disorder (ASD). Moreover, we hypothesized that KMT2B gene duplication might be associated with intellectual disability. Conclusion: Our results show the utility of CMA for precise genetic diagnosis and its integration into the diagnosis, therapy and management of NDD patients.Publication Curcumin improves D-galactose and normalaging associated memory impairment in mice: In vivo and in silico-based studies(2022) Uddin, MohammedAbstract: Aging-induced memory impairment is closely associated with oxidative stress. D-Galactose (D-gal) evokes severe oxidative stress and mimics normal aging in animals. Curcumin, a natural flavonoid, has potent antioxidant and anti-aging properties. There are several proteins like glutathione S-transferase A1 (GSTA1), glutathione S-transferase omega-1 (GSTO1), kelchlike ECH-associated protein 1 (KEAP1), beta-secretase 1 (BACE1), and amine oxidase [flavin-containing] A (MAOA) are commonly involved in oxidative stress and aging. This study aimed to investigate the interaction of curcumin to these proteins and their subsequent effect on aging-associated memory impairment in two robust animal models: D-Gal and normal aged (NA) mice. The aging mice model was developed by administering D-gal intraperitoneally (i.p). Mice (n = 64) were divided into the eight groups (8 mice in each group): Vehicle, CurcuminControl, D-gal (100mg/kg; i.p), Curcumin + D-gal, Astaxanthin (Ast) + D-gal, Normal Aged (NA), Curcumin (30mg/kg Orally) + NA, Ast (20mg/kg Orally) + NA. Retention and freezing memories were assessed by passive avoidance (PA) and contextual fear conditioning (CFC). Molecular docking was performed to predict curcumin binding with potential molecular targets. Curcumin significantly increased retention time (p < 0.05) and freezing response (p < 0.05) in PA and CFC, respectively. Curcumin profoundly ameliorated the levels of glutathione, superoxide dismutase, catalase, advanced oxidation protein products, nitric oxide, and lipid peroxidation in mice hippocampi. In silico studies revealed favorable binding energies of curcumin with GSTA1, GSTO1, KEAP1, BACE1, and MAOA. Curcumin improves retention and freezing memory in D-gal and nature-induced aging mice. Curcumin ameliorates the levels of oxidative stress biomarkers in mice. Anti-aging effects of curcumin could be attributed to, at least partially, the upregulation of antioxidant enzymes through binding with GSTA1, GSTO1, KEAP1, and inhibition of oxidative damage through binding with BACE1 and MAOA.Publication Detection of copy number variants and genes by chromosomal microarray in an Emirati neurodevelopmental disorders cohort(2022) Nassir, Nasna; Al Shaibani, Shaiban; Ahmed, Awab; Tayoun, Ahmad Abou; Uddin, Mohammed; Albanna, AmmarAbstract: Copy number variations (CNVs) are highly implicated in the etiology of neurodevelopmental disorders (NDDs), and chromosomal microarray analysis (CMA) has been recommended as a frst-tier test for many NDDs. We undertook a study to identify clinically relevant CNVs and genes in an ethnically homogenous population of the United Arab Emirates. We genotyped 98 patients with NDDs using genome-wide chromosomal microarray analysis, and observed 47.1% deletion and 52.9% duplication CNVs, of which 11.8% are pathogenic, 23.5% are likely pathogenic, and 64.7% VOUS. The average size of copy number losses (3.9 Mb) was generally higher than of gains (738.4 kb). Analysis of VOUS CNVs for constrained genes (enrichment for brain critical exons and high pLI genes) yielded 7 unique genes. Among these 7 constrained genes, we propose FNTA and PXK as potential candidate genes for neurodevelopmental disorders, which warrants further investigation. Thirty-two overlapping CNVs (Decipher and ClinVar) containing the FNTA gene were previously identifed in NDD patients and 6 overlapping CNVs (Decipher and ClinVar) containing the PXK gene were previously identifed in NDD patients. Our study supports the utility of CMA for CNV profling which aids in precise genetic diagnosis and its integration into therapeutics and management of NDD patients.Publication Effect of Common Medications on the Expression of SARS-CoV-2 Entry Receptors in Kidney Tissue(2020) Tayoun, Ahmad Abou; Loney, Tom; Uddin, Mohammed; Senok, Abiola; Al Heialy, Saba; Alsheikh-Ali, AlawiAbstract: Besides the respiratory system, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection was shown to affect other essential organs such as the kidneys. Early kidney involvement during the course of infection was associated with worse outcomes, which could be attributed to the direct SARS-CoV-2 infection of kidney cells. In this study, the effect of commonly used medications on the expression of SARS-CoV-2 receptor, angiotensin-converting enzyme (ACE)2, and TMPRSS2 protein in kidney tissues was evaluated. This was done by in silico analyses of publicly available transcriptomic databases of kidney tissues of rats treated with multiple doses of commonly used medications. Of 59 tested medications, 56% modified ACE2 expression, whereas 24% modified TMPRSS2 expression. ACE2 was increased with only a few of the tested medication groups, namely the renin-angiotensin inhibitors, such as enalapril, antibacterial agents, such as nitrofurantoin, and the proton pump inhibitor, omeprazole. The majority of the other medications decreased ACE2 expression to variable degrees with allopurinol and cisplatin causing the most noticeable downregulation. The expression level of TMPRSS2 was increased with a number of medications, such as diclofenac, furosemide, and dexamethasone, whereas other medications, such as allopurinol, suppressed the expression of this gene. The prolonged exposure to combinations of these medications could regulate the expression of ACE2 and TMPRSS2 in a way that may affect kidney susceptibility to SARS-CoV-2 infection. Data presented here suggest that we should be vigilant about the potential effects of commonly used medications on kidney tissue expression of ACE2 and TMPRSS2.Publication Expanding the neurodevelopmental phenotypes of individuals with de novo KMT2A variants.(2019-04-26) Uddin, MohammedAbstract: De novo loss-of-function (LoF) variants in theKMT2Agene are associated with Wiedemann−Steiner Syndrome (WSS). Recently, de novo KMT2 Avariants have been identified in sequencing studies of cohorts of individuals with neurodevelopmental disorders (NDDs). However, most of these studies lack the detailed clinical information required to determine whether those individuals have isolated NDDs or WSS (i.e. syndromic NDDs). We performed thorough clinical and neurodevelopmental phenotyping on six individuals with de novo KMT2 Avariants. From these data, we found that all six patients met clinical criteria for WSS and we further define the neurodevelopmental phenotypes associated with KMT2 Avariants and WSS. In particular, we identified a subtype of Autism Spectrum Disorder (ASD) in five individuals, characterized by marked rigid, repetitive and inflexible behaviours, emotional dysregulation, externalizing behaviours, but relative social motivation. To further explore the clinical spectrum associated with KMT2 Avariants, we also conducted a meta-analysis of individuals with KMT2 Avariants reported in the published literature. We found that de novo LoF or missense variants inKMT2Awere significantly more prevalent than predicted by a previously established statistical model of de novo mutation rate forKMT2A. Our genotype−phenotype findings better define the clinical spectrum associated withKMT2Avariants and suggest that individuals with de novo LoF and missense variants likely have a clinically unrecognized diagnosis of WSS, rather than isolated NDD or ASD alone. This highlights the importance of a clinical genetic and neurodevelopmental assessment for individuals with such variants in KMT2A.Publication An Exploration of Physical and Phenotypic Characteristics of Bangladeshi Children with Autism Spectrum Disorder(2020) Albanna, Ammar; Uddin, MohammedAbstract: This study explored the physical and clinical phenotype of Bangladeshi children with autism spectrum disorder (ASD). A totally of 283 children who were referred for screening and administered Module 1 of the Autism Diagnostic Observation Schedule (ADOS) were included. Overall, 209 met the ADOS algorithmic cutof for ASD. A trend for greater weight and head circumference was observed in children with ASD versus non-ASD. Head circumference was signifcantly (p<0.03) larger in ASD males compared with non-ASD males. A trend was also observed for symptom severity, higher in females than males (p=0.068), with further analyses demonstrating that social reciprocity (p<0.014) and functional play (p<0.03) were signifcantly more impaired in ASD females than males. The fndings help understand sex diferences in ASD.Publication Genetic and Clinical Characteristics of Patients in the Middle East With Multisystem Inflammatory Syndrome in Children(2022) Uddin, Mohammed; Al Suwaidi, Hanan; Al-Hammadi, Suleiman; Loney, Tom; Nowotny, Norbert; Alsheikh-Ali, Alawi; Tayoun, Ahmad AbouImportance: Clinical, genetic, and laboratory characteristics of Middle Eastern patients with multisystem in‐ flammatory syndrome in children (MIS-C) have not yet been documented. Objective: To assess the genetic and clinical characteristics of patients with MIS-C of primarily Arab and Asian origin. Design, Setting, and Participants : A prospective, multicenter cohort study was conducted from September 1, 2020, to August 31, 2021, in the United Arab Emirates and Jordan. Forty-five patients with MIS-C and a matched control group of 25 healthy children with a confirmed SARS-CoV-2 infection status were re‐ cruited. Whole exome sequencing in all 70 participants was performed to identify rare, likely deleterious variants in patients with MIS-C and to correlate genetic findings with the clinical course of illness. Exposures: SARS-CoV-2. Main Outcomes and Measures: Fever, organ system complications, laboratory biomarkers, whole exome sequencing findings, treatments, and clinical outcomes were measured. The Mann-Whitney U test was used to as‐ sess the association between genetic variants and MIS-C attributes. The Fisher exact test was used to compute the genetic burden in MIS-C relative to controls. Results: A total of 45 patients with MIS-C (23 [51.1%] male; 30 [66.7%] of Middle Eastern origin; mean [SD] age, 6.7 [3.6] years) and 25 controls (17 [68.0%] male; 24 [96.0%] of Middle Eastern ori‐ gin; mean [SD] age 7.4 [4.0] years) participated in the study. Key inflammatory markers were significantly dysregulated in all patients with MIS-C. Mucocutaneous and gastrointestinal mani‐ festations were each reported in 36 patients (80.0%; 95% CI, 66.1%-89.1%), cardiac findings were reported in 22 (48.9%; 95% CI, 35.0%-63.0%), and neurologic findings were reported in 14 (31.1%; 95% CI, 19.5%-45.6%). Rare, likely deleterious heterozygous variants in immunerelated genes, including TLR3, TLR6, IL22RA2, IFNB1, and IFNA6, were identified in 19 patients (42.2%; 95% CI, 29.0%-56.7%), of whom 7 had multiple variants. There was higher enrichment of genetic variants in patients relative to controls (29 vs 3, P < .001). Patients with those vari‐ ants tended to have earlier disease onset (7 patients [36.8%; 95% CI, 19.1%-58.9%] with ge‐ netic findings vs 2 [7.7%; 95% CI, 2.1%-24.1%] without genetic findings were younger than 3 years at onset) and resistance to treatment (8 patients [42.1%; 95% CI, 23.1%-63.7%] with ge‐ netic findings vs 3 patients [11.5%; 95% CI, 4.0%-29.0%] without genetic findings received 2 doses of intravenous immunoglobulin). Conclusions and Relevance: The results of this cohort study suggest that rare, likely deleterious genetic variants may con‐ tribute to MIS-C disease. This finding paves the way for additional studies with larger, diverse populations to fully characterize the genetic contribution to this new disease entity.Publication Genetic contributions to autism spectrum disorder(2021) Uddin, MohammedAbstract: Autism spectrum disorder (autism) is a heterogeneous group of neurodevelopmental conditions characterized by early childhood-onset impairments in communication and social interaction alongside restricted and repetitive behaviors and interests. This review summarizes recent developments in human genetics research in autism, complemented by epigenetic and transcriptomic findings. The clinical heterogeneity of autism is mirrored by a complex genetic architecture involving several types of common and rare variants, ranging from point mutations to large copy number variants, and either inherited or spontaneous (de novo). More than 100 risk genes have been implicated by rare, often de novo, potentially damaging mutations in highly constrained genes. These account for substantial individual risk but a small proportion of the population risk. In contrast, most of the genetic risk is attributable to common inherited variants acting en masse, each individually with small effects. Studies have identified a handful of robustly associated common variants. Different risk genes converge on the same mechanisms, such as gene regulation and synaptic connectivity. These mechanisms are also implicated by genes that are epigenetically and transcriptionally dysregulated in autism. Major challenges to understanding the biological mechanisms include substantial phenotypic heterogeneity, large locus heterogeneity, variable penetrance, and widespread pleiotropy. Considerable increases in sample sizes are needed to better understand the hundreds or thousands of common and rare genetic variants involved. Future research should integrate common and rare variant research, multi-omics data including genomics, epigenomics, and transcriptomics, and refined phenotype assessment with multidimensional and longitudinal measures.Publication Genomic Context Analysis of de Novo STXBP1 Mutations Identifies Evidence of Splice Site DNA-Motif Associated Hotspots(2018-02-22) Uddin, MohammedAbstract: Mutations withinSTXBP1have been associated with a range of neuro developmental disorder simplicating the pleotropic impact of this gene. Although the frequency of de novo mutations withinSTXBP1for selective cohorts with early onset epileptic encephalopathy is more than 1%, there is no evidence for a hotspot within the gene. In this study, we analyzed the genomic context ofde novo STXBP1mutations to examine whether certain motifs indicated a greater risk of mutation. Through a comprehensive context analysis of 136de novo/rare mutation (SNV/Indels) sites in this gene, strikingly 26.92% of all SNV mutations occurred within 5bp upstream or downstream of a‘GTA’ motif (P,0.0005). This implies a genomic context modulated mutagenesis. Moreover, 51.85% (14 out of 27) of the‘GTA’ mutations are splicing compared to14.70% (20 out of 136) of all reported mutations withinSTXBP1. We also noted that 11 of these 14‘GTA’ associated mutations are de novo in origin. Our analysis provides strong evidence of DNA motif modulated mutagenesis forSTXBP1 de novo splicing mutations.Publication Genotype-phenotype correlation identified a novel SARS-CoV-2 variant possibly linked to severe disease(2021) Loney, Tom; Al Suwaidi, Hanan; Uddin, Mohammed; Senok, Abiola; Nowotny, Norbert; Alsheikh-Ali, Alawi; Tayoun, Ahmad AbouAbstract: The geographic location and heterogeneous multi-ethnic population of Dubai (United Arab Emirates; UAE) provide a unique setting to explore the global molecular epidemiology of SARS-CoV-2 and relationship between different viral strains and disease severity. We systematically selected (i.e. every 100th individual in the central Dubai COVID-19 database) 256 patients by age, sex, disease severity and month to provide a representative sample of laboratory-confirmed COVID-19 patients (nasopharyngeal swab PCR positive) during the first wave of the UAE outbreak (January to June 2020). Sociodemographic and clinical data were extracted from medical records and full SARS-CoV-2 genome sequences extracted from nasopharyngeal swabs were analysed. Older age was significantly associated with COVID-19-associated hospital admission and mortality. Overweight/obese or diabetic patients were 3–4 times more likely to be admitted to hospital and intensive care unit (ICU). Sequencing data showed multiple independent viral introductions into the UAE from Europe, Iran and Asia (29 January–18 March), and these early strains seeded significant clustering consistent with almost exclusive community-based transmission between April and June 2020. Majority of sequenced strains (N = 60, 52%) were from the European cluster consistent with the higher infectivity rates associated with the D614G mutation carried by most strains in this cluster. A total of 986 mutations were identified in 115 genomes, 272 were unique (majority were missense, n = 134) and 20/272 mutations were novel. A missense (Q271R) and synonymous (R41R) mutation in the S and N proteins, respectively, were identified in 2/27 patients with severe COVID-19 but not in patients with mild or moderate disease (0/86; p = .05, Fisher's Exact Test). Both patients were women (51–64 years) with no significant underlying health conditions. The same two mutations were identified in a healthy 37-year-old Indian man who was hospitalized in India due to COVID-19. Our findings provide evidence for continued communitybased transmission of the European strains in the Dubai population and highlight new mutations that might be associated with severe disease in otherwise healthy adults.Publication Germline and somatic mutations in STXBP1 with diverse neurodevelopmental phenotypes(2017-08-30) Uddin, MohammedObjective: To expand the clinical phenotype associated with STXBP1 gene mutations and to understand the effect of STXBP1 mutations in the pathogenesis of focal cortical dysplasia (FCD). Methods: Patients with STXBP1 mutations were identified in various ways: as part of a retrospective cohort study of epileptic encephalopathy; through clinical referrals of individuals (10,619) with developmental delay (DD) for chromosomal microarray; and from a collection of 5,205 individuals with autism spectrum disorder (ASD) examined by whole-genome sequencing. Results: Seven patients with heterozygous de novo mutations affecting the coding region of STXBP1 were newly identified. Three cases had radiologic evidence suggestive of FCD. One male patient with early infantile epileptic encephalopathy, DD, and ASD achieved complete seizure remission following resection of dysplastic brain tissue. Examination of excised brain tissue identified mosaicism for STXBP1, providing evidence for a somatic mechanism. Cell-type expression analysis suggested neuron-specific expression. A comprehensive analysis of the published data revealed that 3.1% of severe epilepsy cases carry a pathogenic de novo mutation within STXBP1. By contrast, ASD was rarely associated with mutations in this gene in our large cohorts. Conclusions: STXBP1 mutations are an important cause of epilepsy and are also rarely associated with ASD. In a case with histologically proven FCD, an STXBP1 somatic mutation was identified, suggesting a role in its etiology. Removing such tissue may be curative for STXBP1-related epilepsy.Publication Gonadal mosaicism of large terminal de novo duplication and deletion in siblings with variable intellectual disability phenotypes(2019) Uddin, MohammedBackground: Intellectual disability (ID) is a complex condition that can impact multiple domains of development. The genetic contribution to ID’s etiology is significant, with more than 100 implicated genes and loci currently identified. The majority of such variants are rare and de novo genetic mutations. Methods: We have applied whole‐genome microarray to identify large, rare, clinically relevant copy number variants (CNVs). We have applied well‐established algorithms for variants call. Quantitative polymerase chain reaction (qPCR) was applied to validate the variants using three technical replicates for each family member. To assess whether the copy number variation was due to balanced translocation or mosaicism, we further conducted droplet digital PCR (ddPCR) on the whole family. We have, as well, applied “critical‐exon” mapping, human developmental brain transcriptome, and a database of known associated neurodevelopmental disorder variants to identify candidate genes. Results: Here we present two siblings who are both impacted by a large terminal duplication and a deletion. Whole‐genome microarray revealed an 18.82 mega base (MB) duplication at terminal locus (7q34‐q36.3) of chromosome 7 and a 3.90 MB deletion impacting the terminal locus (15q26.3) of chromosome 15. qPCR and ddPCR experiments confirmed the de novo origin of the variants and the co‐occurrence of these two de novo events among the siblings, but their absence in both parents, implicates an unbalanced translocation that could have mal‐segregated among the siblings or a possible germline mosaicism. These terminal events impact IGF1R, CNTNAP2, and DPP6, shown to be strongly associated with neurodevelopmental disorders. Detailed clinical examination of the siblings revealed the presence of both shared and distinct phenotypic features. Conclusions: This study identified two large rare terminal de novo events impacting two siblings. Further phenotypic investigation highlights that even in the presence of identical large high penetrant variants, spectrum of clinical features can be different between the siblings.Publication Host transcriptomic profiling of COVID-19 patients with mild, moderate, and severe clinical outcomes(2021) Uddin, Mohammed; Loney, Tom; Nowotny, Norbert; Alsuwaidi, Hanan; Alsheikh-Ali, Alawi; Tayoun, Ahmad AbouAbstract: Characterizing key molecular and cellular pathways involved in COVID-19 is essential for disease prognosis and management. We perform shotgun transcriptome sequencing of human RNA obtained from nasopharyngeal swabs of patients with COVID-19, and identify a molecular signature associated with disease severity. Specifically, we identify globally dysregulated immune related pathways, such as cytokinecytokine receptor signaling, complement and coagulation cascades, JAK-STAT, and TGF- b signaling pathways in all, though to a higher extent in patients with severe symptoms. The excessive release of cytokines and chemokines such as CCL2, CCL22, CXCL9 and CXCL12 and certain interferons and interleukins related genes like IFIH1, IFI44, IFIT1 and IL10 were significantly higher in patients with severe clinical presentation compared to mild and moderate presentations. Differential gene expression analysis identified a small set of regulatory genes that might act as strong predictors of patient outcome. Our data suggest that rapid transcriptome analysis of nasopharyngeal swabs can be a powerful approach to quantify host molecular response and may provide valuable insights into COVID-19 pathophysiology.
- «
- 1 (current)
- 2
- 3
- »