Browsing by Author "Soares, Nelson C"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Gut matters in microgravity: potential link of gut microbiota and its metabolites to cardiovascular and musculoskeletal well-being(2024-08) Soares, Nelson CAbstract The gut microbiota and its secreted metabolites play a significant role in cardiovascular and musculoskeletal health and diseases. The dysregulation of the intestinal microbiota poses a significant threat to cardiovascular and skeletal muscle well-being. Nonetheless, the precise molecular mechanisms underlying these changes remain unclear. Furthermore, microgravity presents several challenges to cardiovascular and musculoskeletal health compromising muscle strength, endothelial dysfunction, and metabolic changes. The purpose of this review is to critically examine the role of gut microbiota metabolites on cardiovascular and skeletal muscle functions and dysfunctions. It also explores the molecular mechanisms that drive microgravity-induced deconditioning in both cardiovascular and skeletal muscle. Key findings in this review highlight that several alterations in gut microbiota and secreted metabolites in microgravity mirror characteristics seen in cardiovascular and skeletal muscle diseases. Those alterations include increased levels of Firmicutes/Bacteroidetes (F/B) ratio, elevated lipopolysaccharide levels (LPS), increased in para-cresol (p-cresol) and secondary metabolites, along with reduction in bile acids and Akkermansia muciniphila bacteria. Highlighting the potential, modulating gut microbiota in microgravity conditions could play a significant role in mitigating cardiovascular and skeletal muscle diseases not only during space flight but also in prolonged bed rest scenarios here on Earth.Publication A non-targeted metabolomics comparative study on plasma of pfizer and sinopharm COVID-19 vaccinated individuals, assessed by (TIMS-QTOF) mass spectrometry(2024-07) Soares, Nelson CAbstract: COVID-19 is a highly contagious infectious disease that has posed a global threat, leading to a widespread pandemic characterized by multi-organ complications and failures. Aims: The present study was conducted to evaluate the impact of Pfizer and Sinopharm vaccines on metabolomic changes and their correlations with immune pathways. Main methods: The study used a cross-sectional design and implemented an untargeted metabolomics-based approach. Plasma samples were obtained from three groups: non-vaccinated participants, Sinopharm-vaccinated participants, and Pfizer-vaccinated participants. Comparative metabolomic analysis was conducted using TIMS-QTOF, and multiple t-tests with a 5 % false discovery rate (FDR) were performed using MetaboAnalyst software. Key findings: Out of the 105 metabolites detected, 72 showed statistically significant changes (p-value < 0.05) across the different groups. Notably, several metabolites such as neopterin, pyridoxal, and syringic acid were markedly altered in individuals vaccinated with Pfizer. Conversely, in the Sinopharm-vaccinated group, significant alterations were observed in sphinganine, neopterin, and sphingosine. These metabolites hold potential as biomarkers for evaluating vaccine efficacy. Additionally, both Pfizer and Sinopharm vaccinations were found to influence sphingolipid and histidine metabolisms compared to the control group. The Sinopharm group also displayed changes in lysine degradation relative to the control group. When comparing the enriched pathways between the Pfizer and Sinopharm-vaccinated groups, differences were observed in purine metabolism. Furthermore, alterations in tryptophan and vitamin B6 metabolism were noted when comparing the Pfizer-vaccinated group with both the control and Sinopharm-vaccinated groups. Significance: These findings highlight the importance of metabolomics in assessing vaccine effectiveness and identifying potential biomarkers for monitoring the efficacy of newly developed vaccines in a shorter timeframe.