Browsing by Author "Ramachandran, Revathy"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Publication Conserved role of FOXC1 in TNBC is parallel to FOXA1 in ER+ breast cancer(2024-07) Ramachandran, Revathy; Ibragimova, Shakhzada; AlHouqani, Tamader; Gomez, Roshna Lawrence; Hachim, Mahmood Y; Ali, Fahad RAbstract Triple-negative breast cancer (TNBC) is characterized by lack of the estrogen (ER) receptor, progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), and standard receptor-targeted therapies are ineffective. FOXC1, a transcription factor aberrantly overexpressed in many cancers, drives growth, metastasis, and stem-cell-like properties in TNBC. However, the molecular function of FOXC1 is unknown, partly due to heterogeneity of TNBC. Here, we show that although FOXC1 regulates many cancer hallmarks in TNBC, its function is varied in different cell lines, highlighted by the differential response to CDK4/6 inhibitors upon FOXC1 loss. Despite this functional heterogeneity, we show that FOXC1 regulates key oncogenes and tumor suppressors and identify a set of core FOXC1 peaks conserved across TNBC cell lines. We identify the ER-associated and drug-targetable nuclear receptor NR2F2 as a cofactor of FOXC1. Finally, we show that core FOXC1 targets in TNBC are regulated in parallel by the pioneer factor FOXA1 and the nuclear receptor NR2F2 in ER + breast cancer.Publication Dietary Patterns and Associated Microbiome Changes that Promote Oncogenesis(2021) Ibragimova, Shakhzada; Ramachandran, Revathy; Ali, Fahad R; Lipovich, Leonard; Ho, Samuel BAbstract: The recent increases in cancer incidences have been linked to lifestyle changes that result in obesity and metabolic syndrome. It is now evident that these trends are associated with the profound changes that occur in the intestinal microbiome, producing altered microbial population signatures that interact, directly or indirectly, with potentially pro-carcinogenic molecular pathways of transcription, proliferation, and inflammation. The effects of the entire gut microbial population on overall health are complex, but individual bacteria are known to play important and definable roles. Recent detailed examinations of a large number of subjects show a tight correlation between habitual diets, fecal microbiome signatures, and markers of metabolic health. Diets that score higher in healthfulness or diversity such as plant-based diets, have altered ratios of specific bacteria, including an increase in short-chain fatty acid producers, which in turn have been linked to improved metabolic markers and lowered cancer risk. Contrarily, numerous studies have implicated less healthy, lower-scoring diets such as the Western diet with reduced intestinal epithelial defenses and promotion of specific bacteria that affect carcinogenic pathways. In this review, we will describe how different dietary patterns affect microbial populations in the gut and illustrate the subsequent impact of bacterial products and metabolites on molecular pathways of cancer development, both locally in the gut and systemically in distant organs.Publication The replication enhancer crtS depends on transcription factor Lrp for modulating binding of initiator RctB to ori2 of Vibrio cholerae(2023) Ramachandran, RevathyAbstract: Replication of Vibrio cholerae chromosome 2 (Chr2) initiates when the Chr1 locus, crtS (Chr2 replication triggering site) duplicates. The site binds the Chr2 initiator, RctB, and the binding increases when crtS is complexed with the transcription factor, Lrp. How Lrp increases the RctB binding and how RctB is subsequently activated for initiation by the crtS-Lrp complex remain unclear. Here we show that Lrp bends crtS DNA and possibly contacts RctB, acts that commonly promote DNA-protein interactions. To understand how the crtS-Lrp complex enhances replication, we isolated Tn-insertion and point mutants of RctB, selecting for retention of initiator activity without crtS. Nearly all mutants (42/44) still responded to crtS for enhancing replication, exclusively in an Lrp-dependent manner. The results suggest that the Lrp-crtS controls either an essential function or more than one function of RctB. Indeed, crtS modulates two kinds of RctB binding to the origin of Chr2, ori2, both of which we find to be Lrp-dependent. Some point mutants of RctB that are optimally modulated for ori2 binding without crtS still remained responsive to crtS and Lrp for replication enhancement. We infer that crtS-Lrp functions as a unit, which has an overarching role, beyond controlling initiator binding to ori2.Publication Super-enhancer associated core regulatory circuits mediate susceptibility to retinoic acid in neuroblastoma cells(2022) Gomez, Roshna Lawrence; Ramachandran, Revathy; Abou Tayoun, Ahmad; Ali, Fahad RAbstract: Neuroblastoma is a pediatric tumour that accounts for more than 15% of cancer-related deaths in children. High-risk tumours are often difficult to treat, and patients’ survival chances are less than 50%. Retinoic acid treatment is part of the maintenance therapy given to neuroblastoma patients; however, not all tumours differentiate in response to retinoic acid. Within neuroblastoma tumors, two phenotypically distinct cell types have been identified based on their super-enhancer landscape and transcriptional core regulatory circuitries: adrenergic (ADRN) and mesenchymal (MES). We hypothesized that the distinct super-enhancers in these different tumour cells mediate differential response to retinoic acid. To this end, three different neuroblastoma cell lines, ADRN (MYCN amplified and nonamplified) and MES cells, were treated with retinoic acid, and changes in the super-enhancer landscape upon treatment and after subsequent removal of retinoic acid was studied. Using ChIP-seq for the active histone mark H3K27ac, paired with RNA-seq, we compared the super-enhancer landscape in cells that undergo neuronal differentiation in response to retinoic acid versus those that fail to differentiate and identified unique super-enhancers associated with neuronal differentiation. Among the ADRN cells that respond to treatment, MYCN-amplified cells remain differentiated upon removal of retinoic acid, whereas MYCN non-amplified cells revert to an undifferentiated state, allowing for the identification of super-enhancers responsible for maintaining differentiation. This study identifies key super-enhancers that are crucial for retinoic acid-mediated differentiation.Publication Tumoral heterogeneity in neuroblastoma(2022) Gomez, Roshna Lawrence; Ibragimova, Shakhzada; Ramachandran, Revathy; Ali, Fahad RAbstract: Neuroblastoma is a solid, neuroendocrine tumor with divergent clinical behavior ranging from asymptomatic to fatal. The diverse clinical presentations of neuroblastoma are directly linked to the high intra- and inter-tumoral heterogeneity it presents. This heterogeneity is strongly associated with therapeutic resistance and continuous relapses, often leading to fatal outcomes. The development of successful risk assessment and tailored treatment strategies lies in evaluating the extent of heterogeneity via the accurate genetic and epigenetic profiling of distinct cell subpopulations present in the tumor. Recent studies have focused on understanding the molecular mechanisms that drive tumoral heterogeneity in pursuing better therapeutic and diagnostic approaches. This review describes the cellular, genetic, and epigenetic aspects of neuroblastoma heterogeneity. In addition, we summarize the recent findings on three crucial factors that can lead to heterogeneity in solid tumors: the inherent diversity of the progenitor cells, the presence of cancer stem cells, and the influence of the tumor microenvironment.