Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
  1. Home
  2. Browse by Author

Browsing by Author "Nasr, Mahmoud Lotfi"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Combinational regenerative inductive effect of bio-adhesive hybrid hydrogels conjugated with hiPSC-derived myofibers and its derived EVs for volumetric muscle regeneration
    (Elsevier BV, 2025-01) Nasr, Mahmoud Lotfi
    In regenerative medicine, extracellular vesicles (EVs) possess the potential to repair injured cells by delivering modulatory factors. However, the therapeutic effect of EVs in large-scale tissue defects, which are subject to prolonged timelines for tissue architecture and functional restoration, remains poorly understood. In this study, we introduce EVs and cell-tethering hybrid hydrogels composed of tyramine-conjugated gelatin (GelTA) that can be in-situ crosslinked with EVs derived from human induced pluripotent stem cell-derived myofibers (hiPSC-myofibers) and hiPSC-muscle precursor cells. This hybrid hydrogel sustains the release of EVs and provides a beneficial nano-topography and mechanical properties for creating a favorable extracellular matrix. Secreted EVs from the hiPSC-myofibers contain specific microRNAs, potentially improving myogenesis and angiogenesis. Herein, we demonstrate increased myogenic markers and fusion/differentiation indexes through the combinatory effects of EVs and integrin-mediated adhesions in the 3D matrix. Furthermore, we observe a unique impact of EVs, which aid in maintaining the viability and phenotype of myofibers under harsh environments. The hybrid hydrogel in-situ crosslinked with hiPSCs and EVs is facilely used to fabricate large-scale muscle constructs by the stacking of micro-patterned hydrogel domains. Later, we confirmed a combinational effect, whereby muscle tissue regeneration and functional restoration were improved, via an in vivo murine volumetric muscle loss model.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback