Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
  1. Home
  2. Browse by Author

Browsing by Author "Maan, Meenu"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Repurposing drugs targeting metabolic diseases for cancer therapeutics
    (2023) Maan, Meenu
    Introduction: Hurdles in the identification of new drugs for cancer treatment have made drug repurposing an increasingly appealing alternative. The approach involves the use of old drugs for new therapeutic purposes. It is cost-effective and facilitates rapid clinical translation. Given that cancer is also considered a metabolic disease, drugs for metabolic disorders are being actively repurposed for cancer therapeutics. In this review, we discuss the repurposing of such drugs approved for two major metabolic diseases, diabetes and cardiovascular disease (CVD), which have shown potential as anticancer treatment. We also highlight the current understanding of the cancer signaling pathways that these drugs target.
  • Loading...
    Thumbnail Image
    Publication
    The Effects of Electronic Cigarettes on Oral Microbiome and Metabolome in 3D Tissue-Engineered Models.
    (2024) Maan, Meenu; Mohamed, Dalia Alsadig; Jalaleddine, Nour; Abuzayeda, Moosa; Khamis, Amar Hassan; Moharamzadeh, Keyvan
    Background and aim: Recent studies have shown that electronic cigarettes (ECs) use disrupts the oral microbiome composition and diversity, impairing the metabolic pathways of the mucosal cells. However, to date, no reports have evaluated the role of EC exposure in the context of oral metabolome. Hence, the aim of this study was to investigate the role of EC aerosol exposure in the dysregulation of the oral microbiome and metabolome profile using in vitro 3D organotypic models of human oral mucosa.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback