Browsing by Author "Kaladhara, Sreelekshmi"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Contextual Conversational Agent to Address Vaccine Hesitancy: Protocol for a Design-Based Research Study(2022-08) Zidoun, Youness; Kaladhara, Sreelekshmi; Powell, Leigh; Nour, Radwa; Al Suwaidi, Hanan; Zary, NabilAbstract: Background: Since the beginning of the COVID-19 pandemic, people have been exposed to misinformation, leading to many myths about SARS-CoV-2 and the vaccines against it. As this situation does not seem to end soon, many authorities and health organizations, including the World Health Organization (WHO), are utilizing conversational agents (CAs) in their fight against it. Although the impact and usage of these novel digital strategies are noticeable, the design of the CAs remains key to their success. Objective: This study describes the use of design-based research (DBR) for contextual CA design to address vaccine hesitancy. In addition, this protocol will examine the impact of DBR on CA design to understand how this iterative process can enhance accuracy and performance. Methods: A DBR methodology will be used for this study. Each phase of analysis, design, and evaluation of each design cycle inform the next one via its outcomes. An anticipated generic strategy will be formed after completing the first iteration. Using multiple research studies, frameworks and theoretical approaches are tested and evaluated through the different design cycles. User perception of the CA will be analyzed or collected by implementing a usability assessment during every evaluation phase using the System Usability Scale. The PARADISE (PARAdigm for Dialogue System Evaluation) method will be adopted to calculate the performance of this text-based CA. Results: Two phases of the first design cycle (design and evaluation) were completed at the time of this writing (April 2022). The research team is currently reviewing the natural-language understanding model as part of the conversation-driven development (CDD) process in preparation for the first pilot intervention, which will conclude the CA’s first design cycle. In addition, conversational data will be analyzed quantitatively and qualitatively as part of the reflection and revision process to inform the subsequent design cycles. This project plans for three rounds of design cycles, resulting in various studies spreading outcomes and conclusions. The results of the first study describing the entire first design cycle are expected to be submitted for publication before the end of 2022. Conclusions: CAs constitute an innovative way of delivering health communication information. However, they are primarily used to contribute to behavioral change or educate people about health issues. Therefore, health chatbots’ impact should be carefully designed to meet outcomes. DBR can help shape a holistic understanding of the process of CA conception. This protocol describes the design of VWise, a contextual CA that aims to address vaccine hesitancy using the DBR methodology. The results of this study will help identify the strengths and flaws of DBR’s application to such innovative projects.Publication A Web-Based Public Health Intervention for Addressing Vaccine Misinformation: Protocol for Analyzing Learner Engagement and Impacts on the Hesitancy to Vaccinate(2022) Powell, Leigh; Nour, Radwa; Zidoun, Youness; Kaladhara, Sreelekshmi; Al Suwaidi, Hanan; Zary, NabilBackground: A barrier to successful COVID-19 vaccine campaigns is the ongoing misinformation pandemic, or infodemic, which is contributing to vaccine hesitancy. Web-based population health interventions have been shown to impact health behaviors positively. For web-based interventions to be successful, they must use effective learning design strategies that seek to address known issues with learner engagement and retention. To know if an intervention successfully addresses vaccine hesitancy, there must be some embedded measure for comparing learners preintervention and postintervention. Objective: This protocol aims to describe a study on the effectiveness of a web-based population health intervention that is designed to address vaccine misinformation and hesitancy. The study will examine learner analytics to understand what aspects of the learning design for the intervention were effective and implement a validated instrument—the Adult Vaccine Hesitancy Scale—to measure if any changes in vaccine hesitancy were observed preintervention and postintervention. Methods: We developed a fully web-based population health intervention to help learners identify misinformation concerning COVID-19 and share the science behind vaccinations. Intervention development involves using a design-based research approach to output more effective interventions in which data can be analyzed to improve future health interventions. The study will use a quasi-experimental design in which a pre-post survey will be provided and compared statistically. Learning analytics will also be generated based on the engagement and retention data collected through the intervention to understand what aspects of our learning design are effective. Results: The web-based intervention was released to the public in September 2021, and data collection is ongoing. No external marketing or advertising has been done to market the course, making our current population of 486 participants our pilot study population. An analysis of this initial population will enable the revision of the intervention, which will then be marketed to a broader audience. Study outcomes are expected to be published by August 2022. We anticipate the release of the revised intervention by May 2022. Conclusions: Disseminating accurate information to the public during pandemic situations is vital to contributing to positive health outcomes, such as those among people getting vaccinated. Web-based interventions are valuable, as they can reach people anytime and anywhere. However, web-based interventions must use sound learning design to help incentivize engagement and motivate learners to learn and must provide a means of evaluating the intervention to determine its impact. Our study will examine both the learning design and the effectiveness of the intervention by using the analytics collected within the intervention and a statistical analysis of a validated instrument to determine if learners had a change in vaccine hesitancy as a result of what they learned.