Browsing by Author "Ibragimova, Shakhzada"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Conserved role of FOXC1 in TNBC is parallel to FOXA1 in ER+ breast cancer(2024-07) Ramachandran, Revathy; Ibragimova, Shakhzada; AlHouqani, Tamader; Gomez, Roshna Lawrence; Hachim, Mahmood Y; Ali, Fahad RAbstract Triple-negative breast cancer (TNBC) is characterized by lack of the estrogen (ER) receptor, progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), and standard receptor-targeted therapies are ineffective. FOXC1, a transcription factor aberrantly overexpressed in many cancers, drives growth, metastasis, and stem-cell-like properties in TNBC. However, the molecular function of FOXC1 is unknown, partly due to heterogeneity of TNBC. Here, we show that although FOXC1 regulates many cancer hallmarks in TNBC, its function is varied in different cell lines, highlighted by the differential response to CDK4/6 inhibitors upon FOXC1 loss. Despite this functional heterogeneity, we show that FOXC1 regulates key oncogenes and tumor suppressors and identify a set of core FOXC1 peaks conserved across TNBC cell lines. We identify the ER-associated and drug-targetable nuclear receptor NR2F2 as a cofactor of FOXC1. Finally, we show that core FOXC1 targets in TNBC are regulated in parallel by the pioneer factor FOXA1 and the nuclear receptor NR2F2 in ER + breast cancer.Publication Dietary Patterns and Associated Microbiome Changes that Promote Oncogenesis(2021) Ibragimova, Shakhzada; Ramachandran, Revathy; Ali, Fahad R; Lipovich, Leonard; Ho, Samuel BAbstract: The recent increases in cancer incidences have been linked to lifestyle changes that result in obesity and metabolic syndrome. It is now evident that these trends are associated with the profound changes that occur in the intestinal microbiome, producing altered microbial population signatures that interact, directly or indirectly, with potentially pro-carcinogenic molecular pathways of transcription, proliferation, and inflammation. The effects of the entire gut microbial population on overall health are complex, but individual bacteria are known to play important and definable roles. Recent detailed examinations of a large number of subjects show a tight correlation between habitual diets, fecal microbiome signatures, and markers of metabolic health. Diets that score higher in healthfulness or diversity such as plant-based diets, have altered ratios of specific bacteria, including an increase in short-chain fatty acid producers, which in turn have been linked to improved metabolic markers and lowered cancer risk. Contrarily, numerous studies have implicated less healthy, lower-scoring diets such as the Western diet with reduced intestinal epithelial defenses and promotion of specific bacteria that affect carcinogenic pathways. In this review, we will describe how different dietary patterns affect microbial populations in the gut and illustrate the subsequent impact of bacterial products and metabolites on molecular pathways of cancer development, both locally in the gut and systemically in distant organs.Publication Tumoral heterogeneity in neuroblastoma(2022) Gomez, Roshna Lawrence; Ibragimova, Shakhzada; Ramachandran, Revathy; Ali, Fahad RAbstract: Neuroblastoma is a solid, neuroendocrine tumor with divergent clinical behavior ranging from asymptomatic to fatal. The diverse clinical presentations of neuroblastoma are directly linked to the high intra- and inter-tumoral heterogeneity it presents. This heterogeneity is strongly associated with therapeutic resistance and continuous relapses, often leading to fatal outcomes. The development of successful risk assessment and tailored treatment strategies lies in evaluating the extent of heterogeneity via the accurate genetic and epigenetic profiling of distinct cell subpopulations present in the tumor. Recent studies have focused on understanding the molecular mechanisms that drive tumoral heterogeneity in pursuing better therapeutic and diagnostic approaches. This review describes the cellular, genetic, and epigenetic aspects of neuroblastoma heterogeneity. In addition, we summarize the recent findings on three crucial factors that can lead to heterogeneity in solid tumors: the inherent diversity of the progenitor cells, the presence of cancer stem cells, and the influence of the tumor microenvironment.