Browsing by Author "Hachim, Mahmood"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Cell free ACE2 RNA: A potential biomarker of COVID-19 severity(2023) Jalaleddine, Nour; Hachim, Mahmood; Senok, Abiola; Al Heialy, SabaAbstract: Despite the downward trend of COVID-19 pandemic and increased immunity of the general population, COVID19 is still an elusive disease with risks due to emerging variants. Fast and reliable diagnosis of COVID-19 disease would allow better therapeutic interventions for patients at risk to develop more severe outcomes. Cell-free RNAs (cfRNAs) have been proven to be an effective biomarker in cancer and infectious diseases. It has been reported that cfRNAs are amplified in the bloodstream of these patients and at earlier stages of the disease, reflecting tissue damage. Hence, we hypothesize that cfRNAs may serve as a potential indicator of COVID-19 disease severity. To our knowledge, this is the first report to display a significant link between COVID-19 severity and cfRNA of angiotensin converting enzyme-2 (ACE2), the receptor for SARS-CoV-2 virus. qRT-PCR analysis of liquid biopsies from COVID-19 patients (n = 82) displayed a significant increase in ACE2-cfRNA levels in patients with severe manifestations. This finding correlated with blood biomarkers (ANC, WBC, and Creatinine) that were also significantly increased in these patients. We previously showed that bronchial cells from obese subjects express higher ACE2 levels, hence, we further analysed the involvement of obesity as a main contributor to severe outcomes. We confirm a significant increase of ACE2-cfRNA in the plasma of obese/overweight (Ob/Ov) COVID-19 patients compared to lean subjects, with no observed significant change in blood biomarkers. These findings suggest that monitoring ACE2-cfRNAs, as a biomarker, during COVID-19 infection may allow for better disease management, specifically for severe-COVID-19 patients.Publication Characterizing the Inflammatory Profile of Neutrophil-Rich Triple-Negative Breast Cancer(2024-02) Al Qutami, Fatma; AlHalabi, Walaa; Vijayakumar, Aswathy; Rawat, Surendra Singh; Samreen, Baila; Hachim, MahmoodAbstract: Breast cancer (BC) is one of the most common types of cancer in women in the United Arab Emirates. Immunogenic tumours, such as triple-negative breast cancer (TNBC), show increased neutrophil infiltration, which is associated with poor prognosis and limited efficacy of immunotherapy. This study aims to investigate in vitro the bidirectional effect of neutrophils on metastatic TNBC (MDA-MB-231) compared to less-metastatic luminal breast cancer (MCF-7) cell lines. We found that BC cells or their conditioned medium (CM) reduced the viability of neutrophil-like cells (HL60). This was supported by increased cellular stress and NETosis in differentiated HL60 cells (dHL60) upon exposure to MDA-MB-231 compared to MCF-7-CM using nucleic acid staining essays. Flow cytometry showed comparable expression of inflammatory markers by polymorphonuclear cells (PMN) when treated with MDA-MB-231-CM and standard polarizing cocktails. Furthermore, MDA-MB-231-CM triggered an inflammatory pattern with evidence of stronger adhesion (CD62L) and degranulation (CD11b and CD66b) phenotypes. The proinflammatory polarization of dHL60 by MDA-MB-231-CM was additionally confirmed by the elevated CD54 expression, myeloperoxidase, and CD11b protein levels, which matched an increased transwell migratory capacity. In conclusion, BC might use neutrophils to their benefit through NETosis and complement system activation, which makes this crosstalk a potential mechanism for understanding tumour progression. Keywords: NETosis; TNBC; neutrophiles; triple-negative breast cancer.Publication Deciphering the Role of Insulin-Like Growth Factor 1 in Endometrial Cancer in Patients With Polycystic Ovary Syndrome: Protocol for a Methodological Approach Using Cell Culture Experiments(2023) Atiomo, William; Alqutami, Fatma; Albasha, Sara; Hachim, MahmoodBackground: Endometrial cancer (EC) is the most common gynecological cancer in women globally. It is linked to increasing obesity rates and longer life spans. The molecular mechanisms leading to EC are unclear; however, women with polycystic ovary syndrome (PCOS) have a 3- to 5-fold increased EC risk. According to a pilot study conducted in the United Kingdom, insulin-like growth factor-1 (IGF-1) gene and protein were raised in the endometrium and blood of women with EC and PCOS, compared with those without PCOS (controls). Therefore, raised serum IGF-1 levels may contribute to an increased EC risk in women with PCOS, but it is necessary to test this hypothesis since not all studies have demonstrated this association. Objective: This study aims to investigate the role of IGF-1 in mediating EC risk in PCOS. This will be achieved by evaluating the proliferative effects of PCOS serum, IGF-1, and IGF-1 antagonist on human endometrial cancer 1-A and 1-B cell lines, with a comparison to controls (using serum from women without PCOS and cell culture media). The study will also identify differentially expressed genes and pathways activated by various treatments. Methods: We intend to recruit 20 women with PCOS and 20 women without PCOS for this cross-sectional study. All experiments will be carried out 4 times to ensure consistency. We will perform transcriptomic and phosphoproteomic profiling to identify differentially expressed genes and phosphoproteins between different treatments using RNA sequencing and phosphoproteomics. We will also perform bioinformatics pathway analysis to identify whether any unique collection of genes or phosphoproteins explains increased EC risk in PCOS. The primary outcome measure will be the cell proliferation (growth) difference measured by cell index values. Our protocol stands out due to its unique approach; no previous study has used this approach to investigate the oncogenic effect of serum from women with PCOS. Additionally, no previous study has considered the differential mutations of genes related to the insulin signaling pathway across various types of human EC cell lines and the potential impact of these variations on their experimental findings. Results: Participants are currently being recruited. It is expected that preliminary findings suitable for analysis and publication will be available by the summer of 2024. Conclusions: Although we currently do not have any results to report, sharing our protocol at this stage will aid in research collaboration, provide an opportunity for early feedback, and help reduce duplication of effort by other research groups. The findings of our study will have broader implications. A deeper understanding of the mechanisms underlying the regulation of the IGF system in PCOS and EC will improve our ability to develop effective treatment modalities for EC and will be a vital step toward reducing EC in women globally.Publication Transcriptomic analysis identifies four novel receptors potentially linking endometrial cancer with polycystic ovary syndrome and generates a transcriptomic atlas(2023) Alqutami, Fatma; Hachim, Mahmood; Atiomo, WilliamAbstract: Polycystic Ovary Syndrome (PCOS) is associated with a 3 to 4-fold increased risk of endometrial cancer (EC), but molecular mechanisms are unclear. Upregulation of the IGF1 gene in PCOS endometrium may increase EC risk, but this is uncertain. We aimed to investigate links between EC and PCOS, by analysing publicly available transcriptomic data. The NCBI Gene Expression Omnibus was used to identify relevant studies. Differentially expressed genes (DEGs) were identified and analysed using Metascape to identify pathways of interest. PCOS DEGs that encode proteins secreted into blood were identified using the Human Protein Atlas blood protein database. EC DEGs that are cellular receptors were identified using EcoTyper. These were intersected to identify which EC receptors interact with PCOS secreted proteins. Seven receptors were identified in EC but only PTPRF, ITGA2, ITGA3 and ITGB4 genes were expressed on epithelial cells. Pathway enrichment of these genes showed that the major and common pathway involved was that of the PI3K-AKT signalling pathway which was consistent with a link between PCOS and EC. However, IGF1 was down regulated in PCOS and EC. These findings hold significant promise for improving our understanding of mechanistic pathways leading to EC in PCOS.