Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
  1. Home
  2. Browse by Author

Browsing by Author "Al Raeesi, Dana"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Publication
    Mechanical Properties of Glide Path Preparation Instruments with Different Pitch Lengths
    (2018) Al Raeesi, Dana; El Abed, Rashid
    Introduction: This study compared the effects of pitch length on the torsional resistance and cyclic fatigue resistance of glide path preparation instruments. Methods: G-File (G1 and G2; Micro-Mega, Besanc ̧on,France) and new generation G-File (NG1 and NG2,Micro-Mega) instruments were compared to evaluate the effects of the shorter pitch of the latter (25% shorter than G-File). G1 and NG1 have a #12 tip size, whereasG2 and NG2 have a #17 tip size. All the files have the same taper of 3%. For comparing the torsional resistances (n= 15), the file was fixed at 4 mm from the tip, and the clockwise rotation at a constant rotational speed of 2 rpm was adjusted until the file fractured. The maximum torsional load and distortion angle at fracture were recorded. For comparing the cyclic fatigue resistances (n= 15), the files were freely rotated in a simulated canal (radius, 3 mm; curvature, 90)at a speed of 300 rpm in a dynamic mode. When the file fractured, the time elapsed was recorded using a chronometer. The number of cycles to failure was calculated by multiplying the total time to failure by the rotation rate. Fractured fragments were examined under the scanning electron microscope. Results: The NG2 instruments had significantly higher fatigue resistance and torsional strength than the G2 instruments (P< .05) and showed approximately the same fatigue resistance as the G1. Scanning electron microscopic examinations revealed the typical appearances of 2 failure modes. Conclusions: A shorter pitch design increased cyclic fatigue resistance and torsional strength of the glide path instruments

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback